Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.471
Filtrar
1.
Front Immunol ; 15: 1365964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585271

RESUMO

Ex-vivo lung perfusion (EVLP) has extended the number of transplantable lungs by reconditioning marginal organs. However, EVLP is performed at 37°C without homeostatic regulation leading to metabolic wastes' accumulation in the perfusate and, as a corrective measure, the costly perfusate is repeatedly replaced during the standard of care procedure. As an interesting alternative, a hemodialyzer could be placed on the EVLP circuit, which was previously shown to rebalance the perfusate composition and to maintain lung function and viability without appearing to impact the global gene expression in the lung. Here, we assessed the biological effects of a hemodialyzer during EVLP by performing biochemical and refined functional genomic analyses over a 12h procedure in a pig model. We found that dialysis stabilized electrolytic and metabolic parameters of the perfusate but enhanced the gene expression and protein accumulation of several inflammatory cytokines and promoted a genomic profile predicting higher endothelial activation already at 6h and higher immune cytokine signaling at 12h. Therefore, epuration of EVLP with a dialyzer, while correcting features of the perfusate composition and maintaining the respiratory function, promotes inflammatory responses in the tissue. This finding suggests that modifying the metabolite composition of the perfusate by dialysis during EVLP can have detrimental effects on the tissue response and that this strategy should not be transferred as such to the clinic.


Assuntos
Transplante de Pulmão , Suínos , Animais , Perfusão/métodos , Transplante de Pulmão/métodos , Preservação de Órgãos/métodos , Diálise Renal , Pulmão/fisiologia
2.
Metabolomics ; 20(3): 44, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581549

RESUMO

INTRODUCTION: Two main approaches (organ culture and hypothermia) for the preservation and storage of human donor corneas are globally adopted for corneal preservation before the transplant. Hypothermia is a hypothermic storage which slows down cellular metabolism while organ culture, a corneal culture performed at 28-37 °C, maintains an active corneal metabolism. Researchers, till now, have just studied the impact of organ culture on human cornea after manipulating and disrupting tissues. OBJECTIVES: The aim of the current work was to optimize an analytical procedure which can be useful for discovering biomarkers capable of predicting tissue health status. For the first time, this research proposed a preliminary metabolomics study on medium for organ culture without manipulating and disrupting the valuable human tissues which could be still used for transplantation. METHODS: In particular, the present research proposed a method for investigating changes in the medium, over a storage period of 20 days, in presence and absence of a human donor cornea. An untargeted metabolomics approach using UHPLC-QTOF was developed to deeply investigate the differences on metabolites and metabolic pathways and the influence of the presence of the cornea inside the medium. RESULTS: Differences in the expression of some compounds emerged from this preliminary metabolomics approach, in particular in medium maintained for 10 and 20 days in presence but also in the absence of cornea. A total of 173 metabolites have been annotated and 36 pathways were enriched by pathway analysis. CONCLUSION: The results revealed a valuable untargeted metabolomics approach which can be applied in organ culture metabolomics.


Assuntos
Hipotermia , Humanos , Preservação de Órgãos/métodos , Metabolômica , Córnea , Técnicas de Cultura de Órgãos/métodos
3.
Zhonghua Wei Chang Wai Ke Za Zhi ; 27(4): 353-358, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38644240

RESUMO

Neoadjuvant immunotherapy has achieved exciting efficacy with high clinical complete response (cCR) and pathologic complete response (pCR) rates and durable long-term effects. PD-1 checkpoint blockade-based immunotherapy has been highly successful in microsatellite instability high (MSI-H)/mismatch repair deficiency (dMMR) colorectal cancer and has been recommended as the first-line treatment for metastatic colorectal cancer by domestic and international guidelines. Several studies have shown that immunotherapy can be a potentially curable treatment for MSI-H rectal cancer and has even shown promise in organ preservation in colon cancer. In this study, we first clarified the feasibility of the watch-and-wait strategy after PD-1 checkpoint blockade treatment by indirect and direct evidence. Then from the assessment tools (including digital rectal examination, endoscopy, radiology, and lymph node assessment), the viable assessment methods of cCR for immunotherapy and related difficulties are proposed. Finally, the medication choices of immunotherapy, the treatment regimen, and the follow-up strategy are further discussed. We hope that neoadjuvant immunotherapy could be appropriately applied in MSI-H/dMMR colorectal cancer so that more patients can achieve organ preservation.


Assuntos
Neoplasias Colorretais , Imunoterapia , Instabilidade de Microssatélites , Terapia Neoadjuvante , Humanos , Imunoterapia/métodos , Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Preservação de Órgãos/métodos , Reparo de Erro de Pareamento de DNA
4.
Sci Rep ; 14(1): 7328, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538723

RESUMO

Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury (IRI) is a major challenge in the field as it can cause post-transplantation complications and limit the use of organs from extended criteria donors. Machine perfusion technology has the potential to mitigate IRI; however, it currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to assess organ quality during perfusion. We developed a real-time and non-invasive method of assessing organs during perfusion based on mitochondrial function and injury using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to quantify the oxidation state of mitochondrial cytochromes during perfusion. This index of mitochondrial oxidation, or 3RMR, was used to understand differences in mitochondrial recovery of cold ischemic rodent livers during machine perfusion at normothermic temperatures with an acellular versus cellular perfusate. Measurement of the mitochondrial oxidation revealed that there was no difference in 3RMR of fresh livers as a function of normothermic perfusion when comparing acellular versus cellular-based perfusates. However, following 24 h of static cold storage, 3RMR returned to baseline faster with a cellular-based perfusate, yet 3RMR progressively increased during perfusion, indicating injury may develop over time. Thus, this study emphasizes the need for further refinement of a reoxygenation strategy during normothermic machine perfusion that considers cold ischemia durations, gradual recovery/rewarming, and risk of hemolysis.


Assuntos
Transplante de Fígado , Humanos , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Análise Espectral Raman , Fígado/metabolismo , Perfusão/métodos , Mitocôndrias
5.
J Transl Med ; 22(1): 221, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429788

RESUMO

BACKGROUND: Cellular stress associated with static-cold storage (SCS) and warm reperfusion of donor lungs can contribute to ischemia-reperfusion (IR) injury during transplantation. Adding cytoprotective agents to the preservation solution may be conducive to reducing graft deterioration and improving post-transplant outcomes. METHODS: SCS and warm reperfusion were simulated in human lung epithelial cells (BEAS-2B) by exposing cells to low potassium dextran glucose solution at 4 °C for different periods and then switching back to serum-containing culture medium at 37 °C. Transcriptomic analysis was used to explore potential cytoprotective agents. Based on its results, cell viability, caspase activity, cell morphology, mitochondrial function, and inflammatory gene expression were examined under simulated IR conditions with or without thyroid hormones (THs). RESULTS: After 18 h SCS followed by 2 h warm reperfusion, genes related to inflammation and cell death were upregulated, and genes related to protein synthesis and metabolism were downregulated in BEAS-2B cells, which closely mirrored gene profiles found in thyroid glands of mice with congenital hypothyroidism. The addition of THs (T3 or T4) to the preservation solution increases cell viability, inhibits activation of caspase 3, 8 and 9, preserves cell morphology, enhances mitochondrial membrane potential, reduces mitochondrial superoxide production, and suppresses inflammatory gene expression. CONCLUSION: Adding THs to lung preservation solutions may protect lung cells during SCS by promoting mitochondrial function, reducing apoptosis, and inhibiting pro-inflammatory pathways. Further in vivo testing is warranted to determine the potential clinical application of adding THs as therapeutics in lung preservation solutions.


Assuntos
Preservação de Órgãos , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Preservação de Órgãos/métodos , Pulmão/metabolismo , Reperfusão , Células Epiteliais/metabolismo , Hormônios Tireóideos/farmacologia , Hormônios Tireóideos/metabolismo
6.
Clin Transplant ; 38(4): e15297, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38545915

RESUMO

INTRODUCTION: Normothermic regional perfusion (NRP) represents an innovative technology that improves the outcomes for liver and kidney recipients of donation after circulatory determination of death (DCD) organs but protocols for abdominal-only NRP (A-NRP) DCD are lacking in the US. METHODS: We describe the implementation and expansion strategies of a transplant-center-based A-NRP DCD program that has grown in volume, geographical reach, and donor acceptance parameters, presented as four eras. RESULTS: In the implementation era, two donors were attempted, and one liver graft was transplanted. In the local expansion era, 33% of attempted donors resulted in transplantation and 42% of liver grafts from donors who died within the functional warm ischemic time (fWIT) limit were transplanted. In the Regional Expansion era, 25% of attempted donors resulted in transplantation and 50% of liver grafts from donors who died within the fWIT limit were transplanted. In the Donor Acceptance Expansion era, 46% of attempted donors resulted in transplantation and 72% of liver grafts from donors who died within the fWIT limit were transplanted. Eight discarded grafts demonstrated a potential opportunity for utilization. CONCLUSION: The stepwise approach to building an A-NRP program described here can serve as a model for other transplant centers.


Assuntos
Preservação de Órgãos , Obtenção de Tecidos e Órgãos , Humanos , Preservação de Órgãos/métodos , Perfusão/métodos , Doadores de Tecidos , Morte , Sobrevivência de Enxerto
7.
Clin Transplant ; 38(4): e15296, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38545928

RESUMO

INTRODUCTION: Clinical success of donation after circulatory death (DCD) heart transplantation is leading to growing adoption of this technique. In comparison to procurement from a brain-dead donor, DCD requires additional resources. The economic impact of DCD heart transplantation from the hospital perspective is not well known. METHODS: We compared the financial data of patients who received DCD allografts to those who received a DBD organ at our institution from January 1, 2021 to December 31, 2022. We also compared the cost of ex-situ machine perfusion to in-situ organ perfusion employed during DCD recovery. RESULTS: We performed 58 DBD and 22 DCD heart-alone transplantations during the study period. Out of 22 DCD grafts, 16 were recovered with thoracoabdominal normothermic regional perfusion (TA-NRP) and six with direct procurement followed by normothermic machine perfusion (DP-NMP). The contribution margin per case for DBD versus DCD was $234,362 and $235,440 (P = .72). The direct costs did not significantly differ between the two groups ($171,949 and 186,250; P = .49). In comparing the two methods of procuring hearts from DCD donors, the direct cost of TA-NRP was $155,955 in comparison to $223,399 for DP-NMP (P = .21). This difference translated into a clinically meaningful but not statistically significant greater contribution margin for TA-NRP ($242, 657 vs. $175,768; P = .34). CONCLUSIONS: Our data showed that the adoption of DCD procurement did not have a negative financial impact on the contribution margin in our institution. Programs considering starting DCD heart transplantation, and those who are currently performing DCD procurement should evaluate their own financial situation.


Assuntos
Transplante de Coração , Obtenção de Tecidos e Órgãos , Humanos , Transplante de Coração/métodos , Doadores de Tecidos , Perfusão/métodos , Morte Encefálica , Morte , Preservação de Órgãos/métodos , Sobrevivência de Enxerto
8.
Sci Rep ; 14(1): 6040, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472309

RESUMO

The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.


Assuntos
Transplante de Fígado , Ratos , Animais , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Fígado/metabolismo , Perfusão/métodos , Fenótipo
9.
Sci Rep ; 14(1): 5715, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459094

RESUMO

Kidney transplantation is a common yet highly demanding medical procedure worldwide, enhancing the quality of life for patients with chronic kidney disease. Despite its prevalence, the procedure faces a shortage of available organs, partly due to contamination by microorganisms, leading to significant organ disposal. This study proposes utilizing photonic techniques associated with organ support machines to prevent patient contamination during kidney transplantation. We implemented a decontamination system using ultraviolet-C (UV-C) irradiation on the preservation solution circulating through pigs' kidneys between harvest and implant. UV-C irradiation, alone or combined with ultrasound (US) and Ps80 detergent during ex-vivo swine organ perfusion in a Lifeport® Kidney Transporter machine, aimed to reduce microbiological load in both fluid and organ. Results show rapid fluid decontamination compared to microorganism release from the organ, with notable retention. By including Ps80 detergent at 0.5% during UV-C irradiation 3 log10 (CFU mL-1) of Staphylococcus aureus bacteria previously retained in the organ were successfully removed, indicating the technique's feasibility and effectiveness.


Assuntos
Descontaminação , Detergentes , Humanos , Animais , Suínos , Descontaminação/métodos , Qualidade de Vida , Diálise Renal , Rim , Preservação de Órgãos/métodos , Perfusão
10.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396938

RESUMO

Protection of the coronary arteries during donor heart maintenance is pivotal to improve results and prevent the development of coronary allograft vasculopathy. The effect of hypothermic, oxygenated perfusion (HOP) with the traditional HTK and the novel HTK-N solution on the coronary microvasculature of donation-after-circulatory-death (DCD) hearts is known. However, the effect on the coronary macrovasculature is unknown. Thus, we maintained porcine DCD hearts by HOP with HTK or HTK-N for 4 h, followed by transplantation-equivalent reperfusion with blood for 2 h. Then, we removed the left anterior descending coronary artery (LAD) and compared the endothelial-dependent and -independent vasomotor function of both groups using bradykinin and sodium-nitroprusside (SNP). We also determined the transcriptome of LAD samples using microarrays. The endothelial-dependent relaxation was significantly better after HOP with HTK-N. The endothelial-independent relaxation was comparable between both groups. In total, 257 genes were expressed higher, and 668 genes were expressed lower in the HTK-N group. Upregulated genes/pathways were involved in endothelial and vascular smooth muscle cell preservation and heart development. Downregulated genes were related to ischemia/reperfusion injury, oxidative stress, mitochondrion organization, and immune reaction. The novel HTK-N solution preserves the endothelial function of DCD heart coronary arteries more effectively than traditional HTK.


Assuntos
Transplante de Coração , Suínos , Animais , Humanos , Transplante de Coração/métodos , Doadores de Tecidos , Coração , Perfusão , Vasos Coronários/fisiologia , Preservação de Órgãos/métodos
11.
Biomed Pharmacother ; 173: 116262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394845

RESUMO

BACKGROUND: The glucose derivative 3-O-methyl-D-glucose (OMG) is used as a cryoprotectant in freezing cells. However, its protective role and the related mechanism in static cold storage (CS) of organs are unknown. The present study aimed to investigate the effect of OMG on cod ischemia damage in cold preservation of donor kidney. METHODS: Pretreatment of OMG on kidney was performed in an isolated renal cold storage model in rats. LDH activity in renal efflux was used to evaluate the cellular damage. Indicators including iron levels, mitochondrial damage, MDA level, and cellular apoptosis were measured. Kidney quality was assessed via a kidney transplantation (KTx) model in rats. The grafted animals were followed up for 7 days. Ischemia reperfusion (I/R) injury and inflammatory response were assessed by biochemical and histological analyses. RESULTS: OMG pretreatment alleviated prolonged CS-induced renal damage as evidenced by reduced LDH activities and tubular apoptosis. Kidney with pCS has significantly increased iron, MDA, and TUNEL+ cells, implying the increased ferroptosis, which has been partly inhibited by OMG. OMG pretreatment has improved the renal function (p <0.05) and prolonged the 7-day survival of the grafting recipients after KTx, as compared to the control group. OMG has significantly decreased inflammation and tubular damage after KTx, as evidenced by CD3-positive cells and TUNEL-positive cells. CONCLUSION: Our study demonstrated that OMG protected kidney against the prolonged cold ischemia-caused injuries through inhibiting ferroptosis. Our results suggested that OMG might have potential clinical application in cold preservation of donor kidney.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Ratos , Animais , 3-O-Metilglucose/farmacologia , Isquemia Fria/efeitos adversos , Preservação de Órgãos/métodos , Rim , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Isquemia/patologia , Ferro
12.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339128

RESUMO

Transplantation is currently the only effective treatment for patients with end-stage liver failure. In recent years, many advanced studies have been conducted to improve the efficiency of organ preservation techniques. Modifying the composition of the preservation fluids currently used may improve graft function and increase the likelihood of transplantation success. The modified fluid is expected to extend the period of safe liver storage in the peri-transplantation period and to increase the pool of organs for transplantation with livers from marginal donors. This paper provides a literature review of the effects of antioxidants on the efficacy of liver preservation fluids. Medline (PubMed), Scopus, and Cochrane Library databases were searched using a combination of MeSH terms: "liver preservation", "transplantation", "preservation solution", "antioxidant", "cold storage", "mechanical perfusion", "oxidative stress", "ischemia-reperfusion injury". Studies published up to December 2023 were included in the analysis, with a focus on publications from the last 30 years. A total of 45 studies met the inclusion criteria. The chemical compounds analyzed showed mostly bioprotective effects on hepatocytes, including but not limited to multifactorial antioxidant and free radical protective effects. It should be noted that most of the information cited is from reports of studies conducted in animal models, most of them in rodents.


Assuntos
Doença Hepática Terminal , Transplante de Fígado , Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transplante de Fígado/métodos , Soluções para Preservação de Órgãos/farmacologia , Fígado , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Perfusão , Conservantes Farmacêuticos
13.
PLoS One ; 19(2): e0297942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329986

RESUMO

Machine perfusion (MP) is often referred to as one of the most promising advancements in liver transplantation research of the last few decades, with various techniques and modalities being evaluated in preclinical studies using animal models. However, low scientific rigor and subpar reporting standards lead to limited reproducibility and translational potential, hindering progress. This pre-registered systematic review (PROSPERO: CRD42021234667) aimed to provide a thematic overview of the preclinical research landscape on MP in liver transplantation using in vivo transplantation models and to explore methodological and reporting standards, using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) score. In total 56 articles were included. Studies were evenly distributed across Asia, Europe, and the Americas. Porcine models were used in 57.1% of the studies, followed by rats (39.3%) and dogs (3.6%). In terms of graft type, 55.4% of the studies used donation after cardiac death grafts, while donation after brain death grafts accounted for 37.5%. Regarding MP modalities, the distribution was as follows: 41.5% of articles utilized hypothermic MP, 21.5% normothermic MP, 13.8% subnormothermic MP, and 16.9% utilized hypothermic oxygenated MP. The stringent documentation of ARRIVE elements concerning precise experimental execution, group size and selection, the choice of statistical methods, as well as adherence to the principles of the 3Rs, was notably lacking in the majority of publications, with less than 30% providing comprehensive details. Postoperative analgesia and antibiotics treatment were not documented in 82.1% of all included studies. None of the analyzed studies fully adhered to the ARRIVE Guidelines. In conclusion, the present study emphasizes the importance of adhering to reporting standards to promote reproducibility and adequate animal welfare in preclinical studies in machine perfusion. At the same time, it highlights a clear deficiency in this field, underscoring the need for further investigations into animal welfare-related topics.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Suínos , Animais , Cães , Ratos , Reprodutibilidade dos Testes , Preservação de Órgãos/métodos , Fígado , Perfusão/métodos , Transplante de Fígado/métodos
14.
Transpl Int ; 37: 12310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317690

RESUMO

Since the early days of clinical lung transplantation the preservation of donor organs has become a fairly standardized procedure and most centers do follow similar processes. This includes the use of low-potassium high dextran flush solutions and static cold storage (SCS) in a cooler filled with ice. Depending on the length of SCS, organs usually arrive at the recipient hospital at a temperature of 0°C-4°C. The question of the optimal storage temperature for donor lung preservation has been revisited as data from large animal experiments demonstrated that organs stored at 10°C experience less mitochondrial damage. Thus, prolonged cold ischemic times can be better tolerated at 10°C-even in pre-damaged organs. The clinical applicability of these findings was demonstrated in an international multi-center observational study including three high-volume lung transplant centers. Total clinical preservation times of up to 24 hrs have been successfully achieved in organs stored at 10°C without hampering primary organ function and short-term outcomes. Currently, a randomized-controlled trial (RCT) is recruiting patients with the aim to compare standard SCS on ice with prolonged SCS protocol at 10°C. If, as anticipated, this RCT confirms data from previous studies, lung transplantation could indeed become a semi-elective procedure.


Assuntos
Transplante de Pulmão , Preservação de Órgãos , Animais , Humanos , Temperatura Baixa , Gelo , Pulmão , Transplante de Pulmão/métodos , Estudos Observacionais como Assunto , Preservação de Órgãos/métodos , Perfusão/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Temperatura , Estudos Multicêntricos como Assunto
15.
BMJ Open Ophthalmol ; 9(1)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388003

RESUMO

PURPOSE: To prove the safety and performance of the hypothermic corneal storage medium "Corneal Chamber" and the rinsing solution "PSS-L" in support of the new Conformité Européenne (CE) certification process in accordance with the Medical Device Regulation. METHODS: Fifteen (n=15) human donor corneas and 11 (n=11) porcine corneas were evaluated for the following parameters: endothelial cell density (ECD) and mortality, percentage of hexagonal cells (HEX%), coefficient of cellular area variation (CV%) and corneal transparency at Day 0 and after 14±1 days of storage in Corneal Chamber medium at 2-8°C. Then, the same parameters were assessed after rinsing of corneas in PSS-L for 1 min at room temperature. Evaluation of gentamicin sulfate carryover after corneal storage and PSS-L rinsing was performed by ultra-high performance liquid chromatography analysis on human corneas homogenates. RESULTS: Human and porcine corneas stored in Corneal Chamber medium showed a good overall quality of the tissue according to the quality parameters evaluated. In particular, mean ECD, HEX% and CV% did not show statistically significant changes at the end of storage and endothelial mortality increased to 3.1±3.3 and 7.8±3.5% in human and porcine corneas, respectively. Tissue rinsing with PSS-L did not affect the quality parameters evaluated before and gentamicin sulfate residues were absent in human corneas. CONCLUSIONS: Corneal preservation in Corneal Chamber medium at 2-8°C for 14 days and the corneal rinse with PSS-L are safe and effective procedures allowing the preservation of the corneal quality parameters as well as the complete elimination of gentamicin sulfate from the tissues before transplantation.Cite Now.


Assuntos
Transplante de Córnea , Endotélio Corneano , Humanos , Suínos , Animais , Córnea , Preservação de Órgãos/métodos , Transplante de Córnea/métodos , Gentamicinas/farmacologia
16.
J Cardiothorac Vasc Anesth ; 38(3): 610-615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228423

RESUMO

As the demand for heart allografts for transplantation continues to rise, ex vivo organ perfusion strategies are playing an increasingly important role in the preservation of organs from donation after circulatory death and extended-criteria donors. One such method uses the Organ Care System (TransMedics, Andover, MA). Traditionally, this technique of preservation requires 2 periods of warm ischemia and subsequent cardioplegic arrest. In a novel surgical technique pioneered at the authors' institution, heart allograft implantation no longer requires a second cardioplegic arrest. This article discusses the surgical approach for this procedure, the advantages and disadvantages of this approach, and analogs to current clinical practice to theorize what impact this may have on cardiac transplantation volumes in the future.


Assuntos
Transplante de Coração , Obtenção de Tecidos e Órgãos , Humanos , Anestesiologistas , Preservação de Órgãos/métodos , Transplante de Coração/métodos , Doadores de Tecidos , Circulação Extracorpórea , Perfusão/métodos
17.
Transplant Proc ; 56(1): 228-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171992

RESUMO

Orthotopic liver transplantation remains the definitive treatment for patients with end-stage liver disease. Unfortunately, the increasing demand for donor livers and the limited supply of viable organs have both led to a critical need for innovative strategies to expand the pool of transplantable organs. The mitochondrion, central to hepatic cellular function, plays a pivotal role in hepatic ischemic injury, with impaired mitochondrial function and oxidative stress leading to cell death. Mitochondrial protection strategies have shown promise in mitigating IRI and resuscitating marginal organs for transplant. Machine perfusion (MP) has been proven a valuable tool for reviving marginal organs with very promising results. Evaluation of liver viability during perfusion traditionally relies on parameters including lactate clearance, bile production, and transaminase levels. Nevertheless, the quest for more comprehensive and universally applicable viability markers persists. Normothermic regional perfusion has gained robust attention, offering extended recovery time for organs from donation after cardiac death donors. This approach has shown remarkable success in improving organ quality and reducing ischemic injury using the body's physiological conditions. The current challenge lies in the absence of a reliable assessment tool for predicting graft viability and post-transplant outcomes. To address this, exploring insights from mitochondrial function in the context of ischemia-reperfusion injury could offer a promising path toward better patient outcomes and graft longevity. Indeed, hypoxia-induced mitochondrial injury may serve as a surrogate marker of organ viability following oxygenated resuscitation techniques in the future.


Assuntos
Preservação de Órgãos , Traumatismo por Reperfusão , Humanos , Preservação de Órgãos/métodos , Fígado , Traumatismo por Reperfusão/prevenção & controle , Isquemia , Metabolismo Energético , Mitocôndrias , Perfusão/métodos
18.
JACC Heart Fail ; 12(3): 438-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38276933

RESUMO

BACKGROUND: Extended criteria donor (ECD) hearts available with donation after brain death (DBD) are underutilized for transplantation due to limitations of cold storage. OBJECTIVES: This study evaluated use of an extracorporeal perfusion system on donor heart utilization and post-transplant outcomes in ECD DBD hearts. METHODS: In this prospective, single-arm, multicenter study, adult heart transplant recipients received ECD hearts using an extracorporeal perfusion system if hearts met study criteria. The primary outcome was a composite of 30-day survival and absence of severe primary graft dysfunction (PGD). Secondary outcomes were donor heart utilization rate, 30-day survival, and incidence of severe PGD. The safety outcome was the mean number of heart graft-related serious adverse events within 30 days. Additional outcomes included survival through 2 years benchmarked to concurrent nonrandomized control subjects. RESULTS: A total of 173 ECD DBD hearts were perfused; 150 (87%) were successfully transplanted; 23 (13%) did not meet study transplantation criteria. At 30 days, 92% of patients had survived and had no severe PGD. The 30-day survival was 97%, and the incidence of severe PGD was 6.7%. The mean number of heart graft-related serious adverse events within 30 days was 0.17 (95% CI: 0.11-0.23). Patient survival was 93%, 89%, and 86% at 6, 12, and 24 months, respectively, and was comparable with concurrent nonrandomized control subjects. CONCLUSIONS: Use of an extracorporeal perfusion system resulted in successfully transplanting 87% of donor hearts with excellent patient survival to 2 years post-transplant and low rates of severe PGD. The ability to safely use ECD DBD hearts could substantially increase the number of heart transplants and expand access to patients in need. (International EXPAND Heart Pivotal Trial [EXPANDHeart]; NCT02323321; Heart EXPAND Continued Access Protocol; NCT03835754).


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Adulto , Humanos , Sobrevivência de Enxerto , Insuficiência Cardíaca/cirurgia , Transplante de Coração/métodos , Preservação de Órgãos/métodos , Estudos Prospectivos , Estudos Retrospectivos , Doadores de Tecidos
19.
Sci Rep ; 14(1): 2384, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286808

RESUMO

Bile acids (BA) are key for liver regeneration and injury. This study aims at analyzing the changes in the BA pool induced by ischemia-reperfusion (IRI) and investigates the impact of hypothermic oxygenated perfusion (HOPE) on the BA pool compared to static cold storage (SCS). In a porcine model of IRI, liver grafts underwent 30 min of asystolic warm ischemia followed by 6 h of SCS (n = 6) ± 2 h of HOPE (n = 6) and 2 h of ex-situ warm reperfusion. The BA pool in bile samples was analyzed with liquid chromatography coupled with tandem mass spectrometry. We identified 16 BA and observed significant changes in response to ischemia-reperfusion, which were associated with both protective and injury mechanisms. Second, HOPE-treated liver grafts exhibited a more protective BA phenotype, characterized by a more hydrophilic BA pool compared to SCS. Key BA, such as GlycoCholic Acid, were identified and were associated with a decreased transaminase release and improved lactate clearance during reperfusion. Partial Least Square-Discriminant Analysis revealed a distinct injury profile for the HOPE group. In conclusion, the BA pool changes with liver graft IRI, and preservation with HOPE results in a protective BA phenotype compared to SCS.


Assuntos
Ácidos e Sais Biliares , Traumatismo por Reperfusão , Suínos , Animais , Preservação de Órgãos/métodos , Perfusão/métodos , Fígado/fisiologia , Isquemia
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279260

RESUMO

Donation after circulatory death (DCD) hearts are predominantly maintained by normothermic blood perfusion (NBP). Nevertheless, it was shown that hypothermic crystalloid perfusion (HCP) is superior to blood perfusion to recondition left ventricular (LV) contractility. However, transcriptomic changes in the myocardium and coronary artery in DCD hearts after HCP and NBP have not been investigated yet. In a pig model, DCD hearts were harvested and maintained for 4 h by NBP (DCD-BP group, N = 8) or HCP with oxygenated histidine-tryptophane-ketoglutarate (HTK) solution (DCD-HTK, N = 8) followed by reperfusion with fresh blood for 2 h. In the DCD group (N = 8), hearts underwent reperfusion immediately after procurement. In the control group (N = 7), no circulatory death was induced. We performed transcriptomics from LV myocardial and left anterior descending (LAD) samples using microarrays (25,470 genes). We applied the Boruta algorithm for variable selection to identify relevant genes. In the DCD-BP group, compared to DCD, six genes were regulated in the myocardium and 1915 genes were regulated in the LAD. In the DCD-HTK group, 259 genes were downregulated in the myocardium and 27 in the LAD; and 52 genes were upregulated in the myocardium and 765 in the LAD, compared to the DCD group. We identified seven genes of relevance for group identification: ITPRIP, G3BP1, ARRDC3, XPO6, NOP2, SPTSSA, and IL-6. NBP resulted in the upregulation of genes involved in mitochondrial calcium accumulation and ROS production, the reduction in microvascular endothelial sprouting, and inflammation. HCP resulted in the downregulation of genes involved in NF-κB-, STAT3-, and SASP-activation and inflammation.


Assuntos
Transplante de Coração , Suínos , Animais , Humanos , Transplante de Coração/métodos , Vasos Coronários , Transcriptoma , DNA Helicases , Doadores de Tecidos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Miocárdio , Perfusão/métodos , Perfilação da Expressão Gênica , Inflamação , Preservação de Órgãos/métodos , Morte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...